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Chapter 1

Magnetic plasmon resonance
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The optical properties of nanostructured metamaterials have been intensively
studied during the last decade. It has been proposed by Pendry, who further
developed earlier studies on negative refraction [1,2] that a metamaterial with
negative dielectric permittivity £ and negative magnetic permeability {1 could be
used for developing a super-lens providing a sub-wavelength resolution.
According to Pendry, when the scattered light passes through a material with a
negative refractive index (specifically, when n =@=—1 and the two
impedances are matched), the evanescent components of the scattered field grow
exponentially, allowing the restoration of the scattered image with
subwavelength resolution. Smith, Padilla, Vier, and Shultz [3] have
demonstrated negative-refraction materials in the microwave range. These
materials are also referred to as double-negative or left-handed materials
(LHMs), because the electric field and magnetic field along with the wavevector
form a left-handed system in this case. In addition to super resolution, the
unusual and sometimes counter-intuitive properties of LHMs make them very
promising for applications in resonators, waveguides and other microwave and
optical elements (see [4] and [5-7]). Huge enhancement of the local em field,
accompanying the subwavelength resolution, can be used to enhanced Raman
and nonlinear spectroscopy of atoms and molecules distributed over the surface
of a LHM.

In spite of large efforts LHMs have not been demonstrated yet in the
optical range. To obtain a negative refraction in the optical range, one needs to
have a metamaterial with optical magnetism, which is a challenging problem
because magnetism is typically weak in the high-frequency range. Relaxation
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times of paramagnetic and ferromagnetic processes are long in comparison with
the optical period and collective magnetic responses become small at high
frequencies. With no collective effects, the magnetic susceptibility is very smail
since it is proportional to v’ /¢* = #* =107, where v is the velocity of electron in

atom, c is the speed of light, and S = e?/he=1/137. [This is because the ratio
v/c appears first with the magnetic field H in the interaction Hamiltonian and
again in the magnetic moment M of atoms.]

For microwave LHMs artificial magnetic elements such as split-ring
resonators (SPRs) and Swiss roll structures have been proposed and
experimentally implemented [3, 4, 8]. In the microwave part of the spectrum
metals can be considered as perfect conductors because the skin depth is much
smaller than the metallic feature size. In the optical part of the spectrum,
however, thin (sub-wavelength) metal components behave very differently
because their sizes become comparable to the skin depth. This is the physical
reason preventing the transfer of the approaches used in design of microwave
LHMs to the optical range. By proper accounting for the metal properties in the
optical range (finite £ < 0), we demonstrate that the artificial magnetism can
exist in (sub-wavelength) plasmonic structures. Artificial magnetism is caused
by the magnetic plasmon resonance (MPR), which is primely determined by the
geometry and material properties of the structure and to a lesser degree, by the
ratio of the structure size and radiation wavelength 1.

Previously we proposed optical LHMs based on half-wavelength-long
metal rods so that a magnetic resonance in this case was directly related to the
wavelength [4, 9]. Here we show that MPR can occur in structures much smaller
than the wavelength. Moreover, there is a close analogy between the electrical
surface plasmon resonance (SPR) and MPR. The electrical SPR occurs in the
optical and infrared part of the spectrum and results from a collective electron
oscillation in metal structures. Consider, for example, an elliptical metal particle

that has the electrical dipole polarizability g o |:1 + (&, ~- 1):]_1 , where £, is

the metal permittivity and y < I is the depolarization factor, which depends on
the aspect ratio. For “good” optical metals (Ag, Au, Al, etc.), the real part of &,
is negative and large while its imaginary part is relatively small in the optical
range. The plasmon resonance corresponds to the condition Ree,, (w)=1-1/y

and it critically depends on metal properties and the shape of a metal
nanoparticle. For particles much smaller than the wavelength, the SPR is size-
and wavelength-independent. Many important plasmon-enhanced optical
phenomena and applications of metal nanocomposites are based on the electrical
SPR (see, for example, [10]).

Below we show that along with the electrical SPR, specially arranged metal
nanoparticles can support a MPR, with the resonance frequency , independent
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Magnetic plasmon resonance

of the size and A. Such structures act as optical nanoantennas by concentrating
large electric and magnetic energies on the nanoscale at the optical frequencies.
The magnetic response is characterized by the magnetic polarizability a,, with

the resonant behavior similar to ap: its real part changes the sign near the
resonance and becomes negative for w > w,, as required for LHMs. Similar to
the electrical SPR where the optical cross section of a nanostructure with size

a<<A can be as large as A2 the MPR can also be characterized by a large
optical cross-section.

19

Fig. 1. Currents in the two-wire line excited by external magnetic field H. The displacement
currents, “closing™ the circuit, are shown by dashed lines

We consider first a pair of parallel metal rods. The external magnetic field
excites the electric current in the pair of the rods as shown in Figl. The
magnetic moment associated with the circular current flowing in the rods results
in a magnetic response of the system. Suppose that an external magnetic field
H = Hyexp (—ia)t) is applied perpendicular to the plane of the pair. The circular

current /(z) excited by the magnetic field flows in opposite directions in the
nanowire pair, as shown in Fig. 1. The displacement currents flowing between
the nanowires close the circuit. We introduce the electric potential

U(z)= jg Edl between the pair where the integration is along the line
{a(z),b(z)}. To find the current I(z), we integrate the Maxwell equation curl
E=ik(H0 +H,~n) over the contour {aq, b, ¢, d} in Fig. 1, where £ = w/c and
H;, = curl A is the magnetic field induced by the current. It is assumed that the
nanowire length 2a is much larger than the distance d between the nanowires
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assume that kd <<1. Under these

anowire b<<d. We also
along the nanowires (z direction)

potential A is directed
e Maxwell equation gives

and the radius of a n
assumptions, the vector
and the integration of th
(IR —ik4, +dU/dz)A=ikH0dAz, )

y [ e=idnolo is the metal
the surface of the nanowires.
ven by solution of Maxwell's

where the pair impedance R =2 omb?) = 8il(eb®
permittivity] and +]R/?2 are the electric fields on
The electric potential U(z) between the pair is gi

equations that can be written for a >> d>> b as

q()exp(ikn)—a(2) _a(Z)exp(ikn) —q(z)] @

- 1 1.,
U(z) =24q(z) Ea (;l-——r;)dz + Ea { . o

where ¢q(z) is the clectric charge per unit length, r1=1/(z—z’)2+b2 ,

R, =(z-2)*+#* and the terms ~ (b/ a)2 are neglected. We explicitly separate
in Eq. (2) the first term, which has a singularity when b — 0; it can be estimated

as 4q(z)In(d/b). The second term in Eq. 2 is regular for b —0 and we can
hus we obtain a local relation between U and g:

4log(d/b)—3(d ! a)? +(dk)?(2log(2a/ d) —1)/2]_1

following the same procedure which
inductance is given by

‘

expand it over dla << 1.T

U(z)=Cq(z) , where c=[
The vector potential 4, can be found
results in  4,(2)=(L/c) (z) , where the

L—4ln(d/b)—(d/ @) [3+4iak +6logQald)}/6. We substitute U(z) and 4,(2)

into Eg. (1), taking into account the charge conservation law kI /dz = iwg(z),

and obtain the second-order differential equation for the current,

2 2
d*1(2) =_g21(z)+Cda) 5, 3)

d22 ¢

_a<z<al(-a)=1(@)=0 , and parameter g

where is given as

—1
gz =2 {LC—SC[(kb)z Em] } The product LC can be estimated as LC ~ 1. We
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Magnetic plasmon resonance

The case of the strong skin effect (|(kb)28ml'1<<1, g~ k), when the pair of
metal wires has a so-called antenna resonance at ka=7/2, was numerically
simulated in our previous papers [9,11] and in papers by Panina et al. [12].

We solve Eq.(3) for the current J(z) and calculate the magnetic moment
m=(20)—1j [rx j(r)]dr , where j(r) is the density of the current and the

integration is over the two nanowires as well as over the space between them
where the displacement currents are flowing. Thus we obtain

m=L Hod n(d/bykd 2 TRE=C (5)

2 G3

The metal permittivity &,, has a large negative value in the optical range
while its imaginary part is small; therefore, the magnetic moment m has a
resonance at G = /2 when the moment m attains large values. The magnetic
resonance frequency @= @, depends on geometry of the system and material
properties. In analogy with the electric SPR in metal nanoparticles, we see that
for the MPR, the size of the sticks can also be arbitrary small in comparison
with the wavelength of the incident light. This is in a striking difference with the
previously considered magnetic resonance at a = A/4 [9]. For a lossless metal
the magnetic polarizability 47z'(m/ Ho) goes to —oo at the resonance. Thus, the
MPR opens the possibility for engineering efficient LHM in the optical range.
For a typical metal, the permittivity £,,(@) can be well approximated by the
Drude formula for the red and infrared parts of the spectrum:

2
em(a))z—(a)/ a)p) /(1-ie, ! @), where @), is the plasma frequency and the
relaxation parameter is small, @, /@ <<1. Then the polarizability oy normalized

to the volume ¥V = 4abd of the pair has the following form near the MPR:

M = —
HyV  A2w,[2log(d/b)

where the resonance frequency @, =b7ra)p,/2log(d /b)/(4a) . The plasma
frequency @, is typically in the ultraviolet part of the spectrum so that

w, << @, and the pre-factor in Eq. (6) can be on the order of one, even for a

nanowire length 2a much smailer than the wavelength 4 of the incident light, so
that a strong MPR can be observed. We can also estimate the optical cross-
section for the MPR, o, ~ 04V / A, assuming that the logarithm factor is ~ 1

[1-0/ 0, -0,/ (20,)]" 6)

and that radiation losses dominate (so that @, ~aV 123 ); this gives
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O\~ a? (d/b). Thus, the magnetic cross-section 0y can be very large and, in

particular, comparable to A? (as in the case of the SPR in spheroids, where

g ~ A% despite the fact that all sizes involved are much smaller than the
wavelength. Thus, by employing both resonances, SPR and MPR, one can
accomplish a strong coupling of nanostructures to both components of light,
electrical and magnetic.

We now consider a metal nanoantenna that has a horseshoe\ shape, which
is obtained from a pair of nanowires by shorting it at one of the ends (see Fig 2).
When the quasistatic condition ]8C[(kb)2em]'1|>>1 holds, the electric current I(z)
in a horseshoe nanoantenna can be obtained from Eq. (3) where the boundary
condition changes to I,_, =(dl/dz),—¢=0 and, as above, a >> d >> b. It is
easy to check that the magnetic polarizability &y is still given by Eq. (6),
where a is now equal to the total length of the horseshoe nanoantenna. Therefore,
the horseshoe nanoantenna provides the same magnetic polarizability &y at
twice shorter length.

Consider now a magnetic permeability 4 for a metamaterial where the
horseshoe nanoantennas are oriented in one direction (“z” direction in Fig. 1)
and are organized in the periodic square lattice. The tensor 4 component, which
is in the direction perpendicular to the plane of the sticks (H direction in Fig. 1),
can be estimated from the Lorenz-Lorentz  formula [14]
(e —1)/ (1o +1)= patps/3 , where p is the volume concentration of the
nanoantennas. Results of our calculations of 4, = 4 +ipy for silver horseshoe
nanoantennas are shown in Fig. 2; the optical parameters for silver were taken
from [10, 15]. As one can see in the figure, the negative magnetism can be
observed, for example, in the near-infrared part of the spectrum, including the
telecommunication wavelength of 1.5 gm. By varying nanoantenna parameters,
one can tune the position of the MPR for any frequency in the visible and

infrared parts of the spectrum.
For practical applications of the optical magnetism losses may play an

important role. We estimate losses (given by up ) at the wavelength
corresponding to the condition 14 =—1 as /i, =l,2a)1. 2log(d/b)/ (Swpadp),
where A, is the resonance wavelength. For metals at room temperatures losses

are significant (for silver, s, ~ 0.3, see Fig. 2) but still they are relatively small.

These losses can be much smaller at low temperatures and atomic quality of
metal crystals. We also note that the radiative losses (which are given by the
small imaginary part of the inductance L) are of no importance for nanoantennas
arranged in a periodic array (ie., in a plasmonic crystal); the radiation
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corrections, in this case, result in a change in the spatial dispersion rather than in
an increase of py.
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Fig. 2. Optical magnetic permeability (@ = ty + iy (y - continuous line, Uy - dashed line)

of the composite containing C shaped silver nanoantennas; volume concentration p = 0.3; left
curves: a = 200 nm, d = 50 nm, b = 13 nm; right curves a = 600nm, d = 90 nm, b =13 nm.
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Fig. 3. Magnetic plasmon resonance in silver nanoantenna, which is placed in a maximum of
external field H{y directed perpendicular to the plane; the frequency corresponds to

A=15um.
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The above results can be easily extended to the two-dimensional case Ll
where the metal nanoantennas have horseshoe profile in X,y plane and extended Nanows
to z = o0 . The quasistatic case corresponds to the condition |K°bde.[>>1, where itself ¢
b is the thickness of the walls of the horseshoe nanoantenna and d is the distance packed
between the opposite walls. Then the resonance frequency @y is defined by the alterna
equation G = 2a./ -2/ (smbd ) — /2, where a is the nanoantenna length. In Fig. cell is
. . . : separal

3 we show the local magnetic field in the silver nanoantenna that resonates at P
electro

wavelength A =1.5um.
. . . . has be
Near the resonance magnetic field inside the nanoantenna 1S large in feld I
magnitude and it is directed opposite to the external field H, which results in | lossles
. . . . . ossles
negative magnetic permeability. The size of the nanoantenna 18 much smaller

magnetic field is not curl-free since it g=1-

than the wavelength yet the resonance :
k are

changes direction at the walls. To estimate the effective magnetic permeability
in this case we use the approach developed in Ref. [16]. Thus we obtain Ao =1

py =1+ p(sHy )-1 f (Hin—Ho )ds for a plasmonic crystal composed by the
is the magnetic field inside a horseshoe nanoantenna,
= da, and p is 2 concentration of the
ar the resonance we obtain the

1Y)

nanoantenmas, where Hi,

the integration is over the area s
nanoantennas organized in a square lattice. Ne
(32/Jr)a2 p)»—z (! 2—G)_1. For a good optical

sharp resonance and can acquire large

Y.m

following equation for p; =

metal the magnetic permeability has a

negative values for @ > @, as shown in Fig. 4.
-100)

B M2

[y - dashed line)

eability U = 1 + 42 (W - continuous line,
d in square lattice;

Fig. 4. Optical magnetic perm
antennas shown in Fig. 3 organize

of the composite containing silver nano
volume concentration p = 0.4.
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LHM can be obtained from the horseshoe composite by adding, e.g., metal
nanowires as it was done in the microwave case [3]. The horseshoe metamaterial
itself can show a left-handed behavior when the nanoantennas are closely
packed. We design two-dimensional dense periodic structure consisting of
alternative up and down horseshoe nanoantennas. One half of the elementary
cell is shown in Fig. 5a. (The structure repeats itself in x and y directions;
separation between antenna centers is 80 nm). Dispersion relation w(kx) for the

electromagnetic wave propagating through the periodic structure in x direction
has been calculated by numerically solving the Maxwell's equation for magnetic
field H,. For computational simplicity, we have assumed a hypothetical

lossless plasmonic material with the frequency-dependent dielectric permittivity
£ =1 —wf, / a)2, where 27c/ wp, =225nm. The frequency w and the wavevector

k are normalized to wy=2mc/Ay and ky=2m/Ay , respectively, where
Ag=15um.

{8} o8 (]
bm\
oat
£ ]
: ]
>
o.795}
o9t
0 ] 2 100 ores; 3 z 3 ) B
Am Wk,

Fig. 5. Plasmonic crystal composed from horseshoe metal nanoantennas; separation between
antennas centers 80 nm. Magnetic (color and contours) and electric (arrows) fields inside a

periodic array of horseshoe-shaped nanoantennas at the cutoff k£, =0 (b) Dispersion relation

wv.s. k, for a left-handed electromagnetic wave.

Remarkably, one of the propagating modes (shown in Fig. 5b) exhibits left-
handedness: its group velocity Vgp = dw/dk opposes its phase velocity. Fig. 5a

shows the magnetic field profile and the electric field inside the elementary cell
for k, =0 (magnetic cutoff condition corresponding to u =0). Magnetic field is
concentrated inside the horseshoes, and has opposite signs in the adjacent
horseshoes. The dominant field in the structure is E, which does not contribute
to the Poynting flux in the propagation direction. Electric field is primarily
potential (i.e. can be derived from an electrostatic potential), but has a non-
vanishing solenoidal component that produces the magnetic field. The fact that
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the dominant electric field E, does not change the sign inside the cell indicates

that the mode in question does not owe its negative dispersion to the band-
folding effect common in photonic crystals. The left-handed behavior occurs in
the vicinity of A =1.88um which is close to the MPR resonance.

Negative index waves described in this letter occur in plasmonic
nanostructures with large negative dielectric permittivity €,<<-1 and, therefore,
they are conceptually different from the negative index waves in perfectly
conducting structures [4] and in the structures with &,, ~—1 [17].

We considered here two types of nanoantennas that support the MPR in the
optical range. Other possible designs could include, for example, nanosized
metal spheres sectored into eight equal parts by thin dielectric slits and split-ring
resonators (SRRs). The SRRs were successfully used earlier for the microwave
LHMs [3]. A subwavelength SRR can provide a large magnetic polarizability at
the resonance, when the radius is as follows R =d|&,|/2r, with d being the
thickness of the dielectric slit in the ring. However, it seems hard, if not
impossible, to have the concentration of SRRs large enough to provide a
reasonable negative magnetic permeability in the optical range. Our estimates
show that for the optimal concentration, a negative magnetic response of a SRR
metamaterial is significantly smaller than for the horseshoe metamaterial
considered above. Yet we would like to stress out that SRR metamaterials can
have a large paramagnetic response in the optical range (with large and positive
|.) with many interesting applications.

In conclusion, we show that a specially designed metal nanoantenna, which
is much smaller than the light wavelength, can have a magnetic plasmon
resonance (MPR) with the resonant frequency depending on the shape and
material properties of the nanoantenna rather than on the wavelength. In this
sense, the MPR is similar to the surface plasmon resonance (SPR) in a metal
nanoparticle. We show that composites comprising such non-magnetic
nanoantennas may have a large magnetic response in the optical spectral range.
Metamaterials based on plasmonic nanoantennas supporting both SPR and MPR
can have a dielectric permittivity and magnetic permeability, which are
simultaneously negative, and thus act as left-handed materials in the optical and
infrared spectral ranges.
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